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About this chapter

¥ Not a comprehensive survey of all of linear algebra

¥ Focused on the subset most relevant to deep
learning

¥ Larger subset: e.g.,Linear Algebra by Georgi Shilov



Scalars

¥ A scalar is a single number
¥ Integers, real numbers, rational numbers, etc.

¥ We denote It with 1talic font:

a, I, X

(Goodfellow 2016)



Vectors

¥ A vector is a 1-D array of numbers:

Dk
X2
X = | (2.1)

Xn

¥ Can be real, binary, integer, etc.

¥ Example notation for type and size:

;RN

(Goodfellow 2016)



Matrices

¥ A matrix is a 2-D array of numbers:

AL Al
A1 Azos

CdLmn

¥ Example notation for type and shape:

Al

(2.2)

m Xn



Tensors

¥ A tensor is an array of numbers, that may have
¥ zero dimensions, and be a scalar
¥ one dimension, and be a vector
¥ two dimensions, and be a matrix

¥ or more dimensions.

(Goodfellow 2016)



Matrix Transpose

(A" )ij = Aji. (2.3)
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Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

(AB) =B’ A" . (2.9)

(Goodfellow 2016)



(2.4)
(2.5)

Ai,k B K,j -

Matrix (Dot) Product

C =AB.
|

Cl,j




ldentity Matrix
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Figure 2.2: Example identity matrix: This is | 3.

vx € R", | ,x = X.



Systems of Equations

AX =D (2.11)
expands to
A1.X = b (2.12)
A2:X = b2 (2.13)
(2.14)
Am X = b (2.15)



Solving Systems of Equations

¥ A linear system of equations can have:
¥ No solution
¥ Many solutions

¥ Exactly one solution: this means multiplication by
the matrix Is an | nvertible function

(Goodfellow 2016)



Matrix Inversion

¥ Matrix inverse:
A A =1,. (2.21)
¥ Solving a system using an inverse:

Ax = b (2.22)
A~tAx = A~ (2.23)
lax = A71b (2.24)

¥ Numerically unstable, but useful for abstract
analysis



Invertibility

¥ Matrix canOt be inverted ifE
¥ More rows than columns
¥ More columns than rows

¥ Redundant rows/columns (Olinearly dependentO,
Olow rankO)

(Goodfellow 2016)



Norms

¥ Functions that measure how OlargeO a vector is

¥ Similar to a distance between zero and the point
represented by the vector

¥f(xX)=0# x=0
¥f(x+y)$ f(x)+ f(y) (the triangle inequality)
¥% ! Rf('x)=|"|f(x)

(Goodfellow 2016)



Norms
! H#

¥ LP norm
1
p

[X1]p = | [P

¥ Most popular norm: L2 norm, p=2
|
¥ L1 norm, p=1: [IXllz= IXil;

¥ Max norm, inbnite p: ||x||: = max [xi].
I

(2.31)

(2.32)

(Goodfellow 2016)



Special Matrices and Vectors

¥ Unit vector:

IX[|2 = 1. (2.36)
¥ Symmetric Matrix:

A= A . (2.35)

¥ Orthogonal matrix:

A A=AA =1. (2.37)
A'l=A



Eigendecomposition

¥ Elgenvector and eigenvalue:

Av = lv, (2.39)
¥ Eigendecomposition of a diagonalizable matrix:
A = Vdiag(! )V . (2.40)

¥ Every real symmetric matrix has a real, orthogonal
eigendecomposition:

A=0Q!Q (2.41)

(Goodfellow 2016)



Elect of Eigenvalues
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Singular Value Decomposition

¥ Similar to eigendecomposition

¥ More general; matrix need not be square

A = UDV . (2.43)

(Goodfellow 2016)



Moore-Penrose Pseudoinverse
X = ATy
¥ If the equation has:

¥ Exactly one solution: this is the same as the inverse.

¥ No solution: this gives us the solution with the
smallest error ||Ax ! y]|2.

¥ Many solutions: this gives us the solution with the
smallest norm of x.

(Goodfellow 2016)



Computing the Pseudoinverse

The SVD allows the computation of the pseudoinverse:

A*T=VvD*'U |, (2.47)

Take reciprocal of non-zero entries

(Goodfellow 2016)



Trace

TF(A): | Ai,i-

Tr(ABC )=Tr( CAB )=Tr( BCA )

(2.48)

(2.51)



Learning linear algebra

¥ Do a lot of practice problems

¥ Start out with lots of summation signs and indexing
Into Individual entries

¥ Eventually you will be able to mostly use matrix
and vector product notation quickly and easily



