matrix and gaussian identities

sam roweis*

note that a,b,c and A,B,C do not depend on X, Y ,x,y or 2

0.1 basic formulae

A(B+C)=AB+AC
(A+B) = AT + BT
(AB)T = BTAT
if individual inverses exist (AB) !=B 'A"!
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0.2 trace, determinant and rank

|AB| = |A[B]  (6)
1

A = TA| (7)

|A| = Hevals (8)
Tr[A] =) evals (9)

if the cyclic products are well defined,
Tr[ABC...|=Tr[BC...A]=Tr[C...AB] =... (10)
rank [A] = rank [ATA] = rank [AAT] (11)
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condition number =y = 7lgglf i teval (12)
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derivatives of scalar forms with respect to scalars, vectors, or matricies
are indexed in the obvious way. similarly, the indexing for derivatives of
vectors and matrices with respect to scalars is straightforward.

*Thanks to Mike Brooks and Zoubin Ghahramani for contributing identities to these
pages.



0.3 derivatives of traces

OTr [X]
X
OTr[XA]  0Tr[AX]
X 09X
OTr [XTA]  0Tr [AXT]
oxX X
OTr [XTAX]
X
OTr [X1A]
X

=1

= AT

=A
=(A+ANHX
— _XflATxfl

0.4 derivatives of determinants
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0.5 derivatives of scalar forms

d(al'x) _ d(xTa) .
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9 ((Xa+b)"'C(Xa+ b))
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= | XTAX|(A + ATYX(XTAX)™!

= (C+Ch)(Xa+b)al



the derivative of one vector y with respect to another vector x is a
matrix whose (i,7)" element is dy(j)/0z(i). such a derivative should be
written as dy! /0x in which case it is the Jacobian matrix of y wrt x. its
determinant represents the ratio of the hypervolume dy to that of dx so
that [ f(y)dy = [ f(y(x))|0y! /0x|dx. however, the sloppy forms dy/dx,
OyT /oxT and Oy /0x" are often used for this Jacobain matrix.

0.6 derivatives of vector/matrix forms
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w = (A + AT)xx" + x" AxI (35)
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0.7 constrained maximization
the maximum over x of the quadratic form:
pl'x — %XTAflx (36)
subject to the J conditions ¢j(x) = 0 is given by:
Ap+ACA, A=-4CTAC)CTAu (37)

where the jth column of C is dc;(x)/0x

0.8 symmetric matrices

have real eigenvalues, though perhaps not distinct and can always be diag-
onalized to the form:

A = CACT (38)



where the columns of C are (orthonormal) eigenvectors (i.e. CC? = I) and
the diagonal of A has the eigenvalues

0.9 block matrices

for conformably partitioned block matrices, addition and multiplication is
performed by adding and multiplying blocks in exactly the same way as
scalar elements of regular matrices
however, determinants and inverses of block matrices are very tricky; for 2
blocks by 2 blocks the results are:

A Ap
‘Aﬂ Ay |Ago| - [F11]| = |Aq1] - [Fag| (39)
AL Apl™! Fl _ATLA LR
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(41)
where
Fii= A — ApAy Ay (42)
Foo = Agy — Agi AT Ay (43)

for block diagonal matrices things are much easier:

A 0
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0.10 matrix inversion lemma

using the above results for block matrices we can make some substitutions
and get the following important result:

(A+XBX")"' = A7 - ATXBT + XTATIX)TIXTATT (46)

where A and B are square and invertible matrices but need not be of
the same dimension. this lemma often allows a really hard inverse to be
converted into an easy inverse. the most typical example of this is when A
is large but diagonal, and X has many rows but few columns



0.11 multidimensional gaussian

a d-dimensional multidimensional gaussian (normal) density for x is:
1

N (11.9) = (n) PR Poxp |50 - -] )

it has entropy:
1
S = 5 logs [(27re)d|2|] — const  bits (48)

where X is a symmetric postive semi-definite covariance matrix and the
(unfortunate) constant is the log of the units in which x is measured over
the “natural units”

0.12 linear functions of a normal vector

no matter how x is distributed,

E[Ax +y] = A(E[x]) +y (49)
Covar[Ax + y] = A(Covar[x]) AT (50)

in particular this means that for normal distributed quantities:
x~N (X)) = (Ax+y) ~N (Ap+y, ASAT) (51)
x~ N (1, 2) = 27 Y2(x — p) ~ N (0,1) (52)
X~ N (1, 2) = (x— )T (x - p) ~ ¥ (53)

0.13 marginal and conditional distributions

let the vector z = [x”y”]” be normally distributed according to:

@)

where C is the (non-symmetric) cross-covariance matrix between x and y
which has as many rows as the size of x and as many columns as the size of
y. then the marginal distributions are:

x~ N (a,A) (55)
y ~N (b,B) (56)
and the conditional distributions are:
x|y ~N (a+ CB !(y —b),A - CB'CT) (57)
y|x ~N (b+CTA ' (x —a),B - CTA"!C) (58)



