Saha, A. and Keeler, J. D. (1990). "Algorithms for
Better Representation and Faster Learning in Radial Basis Function Networks,"
in *Advances in Neural Information Processing Systems 2* (Denver 1989),
D. Touretzky, Editor, 482-489. Morgan Kaufmann, San Mateo.

Salamon, P., Nulton, J. D., Robinson, J., Petersen, J.,
Ruppeiner, G., and Liao, L. (1988). "Simulated Annealing with Constant
Thermodynamic Speed," *Computer Physics Communications*, **49**,
423-428.

Sanger, T. D. (1989). "Optimal Unsupervised Learning
in a Single Layer Linear Feedforward Neural Network," *Neural Networks*,
**2**(6), 459-473.

Sato, M. (1990). "A Real Time Learning Algorithm
for Recurrent Analog Neural Networks," *Biological Cybernetics*,
**62**, 237-241.

Sayeh, M. R. and Han, J. Y. (1987). "Pattern Recognition
Using a Neural Network," *Proc. SPIE, Intelligent Robots and Computer
Vision*, **848**, 281-285.

Schaffer, J. D., Caruana, R. A., Eshelman, L. J., and
Das, R. (1989). "A Study of Control Parameters Affecting Online Performance
of Genetic Algorithms for Function Optimization," in *Proceedings
of the Third International Conference on Genetic Algorithms and their Applications*
(Arlington 1989), J. D. Schaffer, Editor, 51-60. Morgan Kaufmann, San Mateo.

Schoen, F. (1991). "Stochastic Techniques for Global
Optimization: A Survey of Recent Advances," *Journal of Global Optimization*,
**1**, 207-228.

Schultz, D. G. and Gibson, J. E. (1962). "The Variable
Gradient Method for Generating Liapunov Functions," *Trans. IEE*,
**81**(II), 203-210.

Schumaker, L. L. (1981). *Spline Functions: Basic Theory*.
Wiley, New York.

Schwartz, D. B., Samalam, V. K., Solla, S. A., and Denker,
J. S. (1990). "Exhaustive Learning," *Neural Computation*,
**2**(3), 374-385.

Scofield, C. L., Reilly, D. L., Elbaum, C., and Cooper,
L. N. (1988). "Pattern Class Degeneracy in an Unrestricted Storage
Density Memory," in *Neural Information Processing Systems* (Denver
1987), D. Z. Anderson, Editor, 674-682. American Institute of Physics,
New York.

Sejnowski, T. J. and Rosenberg, C. R. (1987). "Parallel
Networks that Learn to Pronounce English Text," *Complex Systems*,
**1**, 145-168.

Sejnowski, T. J., Kienker, P. k., and Hinton, G. (1986).
"Learning Symmetry Groups with Hidden Units: Beyond the Perceptron,"
*Physica*, **22D**, 260-275.

Shannon, C. E. (1938). "A Symbolic Analysis of Relay
and Switching Circuits," *Trans. of the AIEE*, **57**, 713-723.

Shaw, G. and Vasudevan, R. (1974). "Persistent States
of Neural Networks and the Nature of Synaptic Transmissions," *Math.
Biosci.*, **21**, 207-218.

Sheng, C. L. (1969). *Threshold Logic.* Academic
Press, New York, NY.

Shiino, M. and Fukai, T. (1990). "Replica-Symmetric
Theory of the Nonlinear Analogue Neural Networks," *J. Phs. A*,
**23**, L1009-L1017.

Shrödinger, E. (1946). *Statistical Thermodynamics*.
Cambridge University Press, London.

Sietsma, J. and Dow, R. J. F. (1988). "Neural Net
Pruning - Why and How," in *IEEE International Conference on Neural
Networks* (San Diego 1988), vol. I, 325-333. IEEE, New York.

Silva, F. M. and Almeida, L. B. (1990). "Acceleration
Techniques for the Backpropagation Algorithm," *Neural Networks,
Europe Lecture Notes in Computer Science*, L. B. Almeida and Wellekens,
Editors, 110-119. Springer-Verlag, Berlin.

Simard, P. Y., Ottaway, M. B., and Ballard, D. H. (1988).
"Analysis of Recurrent Backpropagation," Technical Report 253,
Department of Computer Science, University of Rochester.

Simard, P. Y., Ottaway, M. B., and Ballard, D. H. (1989).
"Analysis of Recurrent Backpropagation," in *Proceedings of
the 1988 Connectionist Models Summer School* (Pittsburgh 1988), D. Touretzky,
G. Hinton, and T. Sejnowski, Editors, 103-112. Morgan Kaufmann, San Mateo.

Simeone, B., Editor (1989). *Combinatorial Optimization*.
Springer-Verlag, New York.

Simpson, P. K. (1990). "Higher-Ordered and Intraconnected
Bidirectional Associative Memory, *IEEE Trans. System, Man, and Cybernetics*,
**20**(3), 637-653.

Slansky, J. and Wassel, G. N. (1981). *Pattern Classification
and Trainable Machines.* Springer-Verlag, New York.

van der Smagt, P. P. (1994). "Minimisation Methods
for Training Feedforward Neural Networks," *Neural Networks*,
**7**(1), 1-11.

Smith, J. M. (1987). "When Learning Guides Evolution,"
*Nature*, **329**, 761-762.

Smolensky, P. (1986). "Information Processing in
Dynamical Systems: Foundations of Harmony Theory," in *Parallel
Distributed Processing: Explorations in the Microstructure of Cognition*,
vol. I, D. E. Rumelhart, J. L. McClelland, and the PDP Research Group.
MIT Press, Cambridge.

Snapp, R. R., Psaltis, D. and Venkatesh, S. S. (1991).
"Asymptotic Slowing Down of the Nearest-Neighbor Classifier,"
in *Advances in Neural Information Processing Systems 3* (Denver 1990),
R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Editors, 932-938. Morgan
Kaufmann, San Mateo.

Solla, S. A., Levin, E., and Fleisher, M. (1988). "Accelerated
Learning in Layered Neural Networks," *Complex Systems*, **2**,
625-639.

Song, J. (1992). "Hybrid Genetic/Gradient Learning
in Multi-Layer Artificial Neural Networks," Ph.D. Dissertation, Department
of Electrical and Computer Engineering, Wayne State University, Detroit,
Michigan.

Sontag, E. D. and Sussann, H. J. (1985). "Image Restoration
and Segmentation Using Annealing Algorithm," in *Proc. 24th Conference
on Decision and Control* (Ft. Lauderdale 1985), 768-773.

Soukoulis, C. M., Levin, K., and Grest, G. S. (1983).
"Irreversibility and Metastability in Spin-Glasses. I. Ising Model,"
*Physical Review*, **B28**, 1495-1509.

Specht, D. F. (1990). "Probabilistic Neural Networks,"
*Neural Networks*, **3**(1), 109-118.

Sperduti, A. and Starita, A. (1991). "Extensions
of Generalized Delta Rule to Adapt Sigmoid Functions," *Proceedings
of the 13th Annual International Conference IEEE/EMBS*, 1393-1394. IEEE,
New York.

Sperduti, A. and Starita, A. (1993). "Speed Up Learning
and Networks Optimization with Extended Back Propagation," *Neural
Networks*, **6**(3), 365-383.

Spitzer, A. R., Hassoun, M. H., Wang, C., and Bearden,
F. (1990). "Signal Decomposition and Diagnostic Classification of
the Electromyogram Using a Novel Neural Network Technique," in *Proc.
XIVth Ann. Symposium on Computer Applications in Medical Care* (Washington
D. C., 1990), R. A. Miller, Editor, 552-556. IEEE Computer Society Press,
Los Alamitos.

Stent, G. S. (1973). "A Physiological Mechanism for
Hebb's Postulate of Learning," *Proceedings of the National Academy
of Sciences *(USA), **70**, 997-1001.

Stiles, G. S. and Denq, D-L. (1987). "A Quantitative
Comparison of Three Discrete Distributed Associative Memory Models,"
*IEEE Trans. Computers*, **C-36**, 257-263.

Stinchcombe, M. and White, H. (1989). "Universal
Approximations Using Feedforward Networks with Non-Sigmoid Hidden Layer
Activation Functions," *Proc. Int. Joint Conf. Neural Networks*
(Washington, D. C. 1989), vol. I, 613-617. SOS Printing, San Diego.

Stone, M. (1978). "Cross-Validation: A Review,"
*Math. Operationsforsch Statistik*, **9**, 127-140.

Sudjianto, A. and Hassoun, M. (1994). "Nonlinear
Hebbian Rule: A Statistical Interpretation," *IEEE International
Conference on Neural Networks*, (Orlando 1994), vol. XXX, XXXpage numbersXXX,
IEEE Press.

Sun, G.-Z., Chen, H.-H., and Lee, Y.-C. (1992). "Green's
Function Method for Fast On-Line Learning Algorithm of Recurrent Neural
Networks," in *Advances in Neural Information Processing 4* (Denver
1991), J. E. Moody, S. J. Hanson, and R. P. Lippmann, Editors, 317-324.
Morgan Kaufmann, San Mateo.

Sun, X. and Cheney, E. W. (1992). "The Fundamentals
of Sets of Ridge Functions," *Aequationes Math*., **44**,
226-235.

Suter, B. and Kabrisky, M. (1992). "On a Magnitude
Preserving Iterative MAXnet Algorithm," *Neural Computation*,
**4**(2), 224-233.

Sutton, R. (1986). "Two Problems with Backpropagation
and Other Steepest-Descent Learning Procedures for Networks," *Proceedings
of the 8th Annual Conference on the Cognitive Science Society* (Amherst
1986), 823-831. Lawrence Erlbaum, Hillsdale.

Sutton, R. S., Editor. (1992). Special Issue on Reinforcement
Learning, *Machine Learning*, **8**, 1-395.

Sutton, R. S., Barto, A. G., and Williams, R. J. (1991).
"Reinforcement Learning is Direct Adaptive Optimal Control,"
in *Proc. of the American Control Conference* (Boston 1991), 2143-2146.

Szu, H. (1986). "Fast Simulated Annealing,"
in *Neural Networks for Computing* (Snowbird 1986), J. S. Denker,
Editor, 420-425. American Institute of Physics, New York.